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The Casimir stress on a cylindrical shell in background of conformally flat spacetime
for massless scalar field is investigated. In the general case of Robin (mixed) boundary
condition, formulae are derived for the vacuum expectation values of the energy–
momentum tensor and vacuum forces acting on boundaries. The special case of the
dS bulk is considered then different cosmological constants are assumed for the space
inside and outside of the shell to have general results applicable to the case of cylindrical
domain wall formations in the early universe.
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1. INTRODUCTION

The Casimir effect is one of the most interesting manifestations of nontrivial
properties of the vacuum state in quantum field theory (Mostepanenko et al.,
1997; Plunien et al., 1986). Since its first prediction by Casimir (1948), this effect
has been investigated for different fields having different boundary geometries
(Bordag et al., 2001; Elizalde, 1995; Elizalde et al., 1994; Milton, 1999, 2000).
The Casimir effect can be viewed as the polarization of vacuum by boundary
conditions or geometry. Therefore, vacuum polarization induced by a gravitational
field is also considered as Casimir effect. The types of boundary and conditions
that have been most often studied are those associated to well-known problems,
e.g. plates, spheres, and vanishing conditions, perfectly conducting conditions, etc.
The cylindrical problem with perfectly conducting conditions was first considered
in De Raad and Milton (1981), for recent study see Gosdzinsky and Romeo (1998),
and Milton (1999).

In the context of hot big bang cosmology, the unified theories of the fun-
damental interactions predict that the universe passes through a sequence of
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phase transitions. These phase transitions can give rise to domain wall structures
determined by the topology of the manifold M of degenerate vacuua (Kibble,
1976; Vilenkin, 1985; Zel’dovich et al., 1975). If M is disconnected, i.e., if π (M)
is nontrivial, then one can pass from one ordered phase to the other only by going
through a domain wall. If M has two connected components, e.g., if there is only a
discrete reflection symmetry with π0(M) = Z2, then there will be just two ordered
phase separated by a domain wall.

The time evolution of topological defects have played an important role in
many branches of physics, e.g., vortices in superconductors (Huebener, 1979)
and in superfluid (Donnelly, 1991), defects in liquid crystals (Chandrasekhar and
Ranganath, 1986), domain wall (Arodz and Larsen, 1994; Arodz, 1995), cosmic
string (Kibble, 1976; Vilenkin, 1985), and a flux tube in QCD (Baker et al., 1991).

Zel’dovich et al. (1975) have shown that the energy density of the domain
walls is so large that it would dominate the universe completely, violating the
observed approximation isotropy and homogeneity. In other words, the domain
walls were assumed to somehow disappear again soon after their creation in the
early universe, for instance, by collapse, evaporation, or simply by inflating away
from our visible universe. Much later, however, Hill et al. (1998) introduced the so
called light or soft domain walls. They considered a late-time phase transition and
found that light domain walls could be produced that were not necessarily in con-
tradiction with observed large-scale structure of the universe. In addition, whatever
the cosmological effects, we find it important to obtain a better understanding of
the dynamics of domain walls.

Casimir effect in curved spacetime has not been studied extensively. Casimir
effect in the presence of a general relativistic domain wall is considered in Setare
and Saharian (2001), and a study of the relation between trace anomaly and the
Casimir effect can be found in Setare and Rezaeian (2000). Casimir effect may
have interesting implications for the early universe. It has been shown, e.g., in
Antonsen and Borman (1998) that a closed Robertson–Walker spacetime in which
the only contribution to the stress tensor comes from Casimir energy of a scalar
field is excluded. In inflationary models, where the dynamics of bubbles may play
a major role, this dynamical Casimir effect has not yet been taken into account. Let
us mention that in Setare and Mansouri (2001a) we have investigated the Casimir
effect of a massless scalar field with Dirichlet boundary condition in spherical
shell having different vacuua inside and outside, which represents a bubble in
early universe with false/true vacuum inside/outside. In this reference, the sphere
has zero thickness. In another paper (Setare, 2001), we have extended the analysis
to the spherical shell with nonvanishing thickness. The Casimir stress on two par-
allel plates with constant comoving distance having different vacua between and
outside are calculated in Setare and Mansouri (2001b). In the present paper, we
will investigate the vacuum expectation values of the energy–momentum tensor
of the conformally coupled scalar field on background of the conformally flat
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spacetime. We will consider a cylindrical shell and boundary conditions of the
Robin type on the shell. The latter includes the Dirichlet and Neumann bound-
ary conditions as special cases. The Casimir energy–momentum tensor for these
geometries can be generated from the corresponding flat spacetime results by us-
ing the standard transformation formula. Then we consider cylindrical shell with
constant comoving radius having different vacuums inside and outside, i.e., with
false/true vacuum inside/outside. Our model may be used to study the effect of
the Casimir force on the dynamics of the cylindrical domain wall appearing in the
simplest Goldston model. In this model, potential of the scalar field has two equal
minima corresponding to degenerate vacuua. Therefore, scalar field maps points at
spatial infinity in physical space nontrivially into the vacuum manifold (Vilenkin
and Shellard, 1994). Domain wall structure occur at the boundary between these
regions of space. One may assume that the outer regions of cylinder are in �out

vacuum corresponding to degenerate vacuua in domain wall configuration. The
Casimir effect for the general Robin boundary conditions on background of the
Minkowski spacetime was investigated in Romeo and Saharian (2002) for flat
boundaries, and the effect for spherically and cylindrically symmetric boundaries
in the case of a general conformal coupling was investigated in Saharian (2001),
and Romeo and Saharian (2001). Here we use the results of Romeo and Saharian
(2001) to generate vacuum energy–momentum tensor for the cylindrical shell in
conformally flat backgrounds. The paper is organized as follows. In the next sec-
tion the vacuum expectation values of the energy–momentum tensor and vacuum
forces acting on shell are evaluated for a general case of a conformally flat back-
ground. In Section 3, we study the bulk Casimir effect for a conformal scalar when
the bulk is a four-dimensional de Sitter space. Finally, the results are re-mentioned
and discussed in last section.

2. VACUUM EXPECTATION VALUES FOR
THE ENERGY–MOMENTUM TENSOR

In this paper, we will consider a conformally coupled massless scalar field
ϕ(x) satisfying the equation

(∇µ∇µ + ξR)ϕ(x) = 0, ξ = D − 1

4D
(1)

on background of a D + 1-dimensional conformally flat spacetime with the metric

gµν = e−2σ (r)ηµν, µ, ν = 0, 1, . . . , D. (2)

In Equation (1) ∇µ is the operator of the covariant derivative, and R is the Ricci
scalar for the metric gµν . Note that for the metric tensor from Equation (2), one
has

R = De2σ [2σ ′′ − (D − 1)σ ′2], (3)
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where the prime corresponds to the differentiation with respect to r . We will
assume that the field satisfies the mixed boundary condition

(A + Bni∇i)ϕ(x) = 0 (4)

on the cylindrical shell with radius a. Here ni is the normal to the boundary surface,
∇i is the covariant derivative operator, A and B are constants. The results in the
following will depend on the ratio of these coefficients only. However, to keep the
transition to the Dirichlet and Neumann cases transparent, we will use the form
(4).

It can be shown that for a conformally coupled scalar by using field equation
(1), the expression for the energy–momentum tensor can be presented in the form

Tµν = ∇µϕ∇νϕ − ξ

[
gµν

D − 1
∇ρ∇ρ + ∇µ∇ν + Rµν

]
ϕ2, (5)

where Rµν is the Ricci tensor. The quantization of a scalar filed on background
of metric (2) is standard. Let {ϕα(x), ϕ∗

α(x)} be a complete set of orthonormal-
ized positive and negative frequency solutions to the field equation (1), obeying
boundary condition (4). By expanding the field operator over these eigenfunctions,
using the standard commutation rules and the definition of the vacuum state for
the vacuum expectation values of the energy–momentum tensor, one obtains

〈0|Tµν(x)|0〉 =
∑

α

Tµν{ϕα, ϕ∗
α}, (6)

where |0〉 is the amplitude for the corresponding vacuum state, and the bilinear
form Tµν{ϕ,ψ} on the right is determined by the classical energy–momentum
tensor (5). In the problem under consideration, we have a conformally trivial situ-
ation: conformally invariant field on background of the conformally flat spacetime.
Instead of evaluating Equation (6) directly on background of the curved metric, the
vacuum expectation values can be obtained from the corresponding flat spacetime
results for a scalar field ϕ̄ by using the conformal properties of the problem under
consideration. Under the conformal transformation gµν = �2ηµν , the ϕ̄ field will
change by the rule

ϕ(x) = �(1−D)/2ϕ̄(x), (7)

where for metric (2) the conformal factor is given by � = e−σ (r). The boundary
conditions for the field ϕ̄(x) can be written as follows

(Ā + B̄∂r )ϕ̄ = 0, (8)

with constant Robin coefficients Ā and B̄. Comparing to the boundary condi-
tions (4) and taking into account transformation rule (7), we obtain the following
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relations between the corresponding Robin coefficients

Ā = A + D − 1

2
σ ′(a)eσ (a)B, B̄ = Beσ (a). (9)

Note that as Dirichlet boundary conditions are conformally invariant, the Dirichlet
scalar in the curved bulk corresponds to the Dirichlet scalar in a flat spacetime.
However, for the case of Neumann scalar, the flat spacetime counterpart is a Robin
scalar with Ā = (D − 1)σ ′(a)/2 and B̄ = 1. The Casimir effect with boundary
conditions (8) on cylindrical shell on background of the Minkowski spacetime
is investigated in Romeo and Saharian (2002) for a scalar field with a general
conformal coupling parameter. In the case of a conformally coupled scalar, the
corresponding regularized VEVs for the energy–momentum tensor have the form

〈0|Tµν |0〉 = diag(ε,−p1,−p2,−p3, . . . ,−pD). (10)

Here ε is the vacuum energy density, p1, p2, p3 = p4 = · · · = pD are effective
pressures in the radial, azimuthal, and longitudinal directions, respectively (vac-
uum stresses). These quantities are determined by the relations

qSUB = 21−Dπ−(D+1)/2

aD+1�(D/2 − 1/2)

+∞∑
n=−∞

∫ ∞

0
dz zD+3 K̄n(z)

Īn(z)
F (q)

n [In(zr/a)], (11)

where In(z) and Kn(z) are the modified Bessel functions, and

F (ε)
n [f (z)] = 1

D − 1
f 2(z) +

(
2ξ − 1

2

)[
f ′2(z) +

(
n2

z2
+ 1

)
f 2(z)

]
(12)

F (p1)
n [f (z)] = 1

2

[(
n2

z2
+ 1

)
f 2(z) − f ′2(z)

]
− 2ξ

z
f (z)f ′(z) (13)

F (p2)
n [f (z)] = −

(
2ξ − 1

2

)[
f ′2(z) +

(
n2

z2
+ 1

)
f 2(z)

]

+ 2ξ

z
f (z)f ′(z) − n2

z2
f 2(z) (14)

F (pi )
n [f (z)] = −F (ε)

n [f (z)], i = 3, . . . , D. (15)

Here and later we use the notation

f̄ (z) ≡ Af (z) + (B/a)zf ′(z) (16)

for a given function f (z). Similarly, the vacuum expectation values for the exterior
of a single cylindrical shell can be obtained, the result is as follows (Romeo and
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Saharian, 2002)

qSUB = 21−Dπ−(D+1)/2

aD+1�(D/2 − 1/2)

+∞∑
n=−∞

∫ ∞

0
dz zD+3 Īn(z)

K̄n(z)
F (q)

n [Kn(zr/a)], (17)

where we use notations (12)–(15). As we see, these quantities can be obtained
from the ones for interior region by the replacements I → K , K → I . Using the
expressions for the interior and exterior quantities we have

F = −2−Dπ−(D+1)/2

aD+1�(D/2 − 1/2)

+∞∑
n=−∞

∫ ∞

0
dz zD+1

×
[

2β − 4ξ + (z2 + n2 − β2 + 4ξβ)
(Ĩn(z)K̃n(z))′

zĨ ′
n(z)K̃ ′

n(z)

]
(18)

for the total vacuum force acting per unit surface of the shell. In these formulae,
we have introduced the notation

f̃ (z) = zβf (z), β = A/B (19)

for a given function f (z).
The vacuum energy–momentum tensor on curved background (2) is obtained

by the standard transformation law between conformally related problems (see,
for instance, Birrell and Davies, 1986) and has the form〈

T µ
ν [gαβ]

〉
ren = 〈

T µ
ν [gαβ]

〉(0)
ren + 〈

T µ
ν [gαβ]

〉(b)
ren. (20)

Here the first term on the right is the vacuum energy–momentum tensor for the
situation without boundaries (gravitational part), and the second one is due to
the presence of boundaries. As the quantum field is conformally coupled and the
background spacetime is conformally flat, the gravitational part of the energy–
momentum tensor is completely determined by the trace anomaly and is related
to the divergent part of the corresponding effective action by the relation (Birrell
and Davies, 1986) 〈

T µ
ν [gαβ]

〉(0)
ren = 2gµσ (x)

δ

δgνσ (x)
Wdiv[gαβ]. (21)

Note that in odd spacetime dimensions, the conformal anomaly is absent and the
corresponding gravitational part vanishes:〈

T µ
ν [gαβ]

〉(0)
ren = 0, for even D. (22)

The boundary part in Equation (20) is related to the corresponding flat spacetime
counterpart (10) by the relation (Birrell and Davies, 1986)〈

T µ
ν [gαβ]

〉(b)
ren = 1√|g|

〈
T̄ µ

ν [ηαβ]
〉
ren. (23)
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By taking into account Equation (10) from here we obtain〈
T µ

ν [gαβ]
〉(b)
ren = e(D+1)σ (r)diag(ε,−p1,−p2,−p3, . . . ,−pD), (24)

Now we see that as gravitational part (20) is a continuous function on r , it does
not contribute to the forces acting on the boundary and the vacuum force per unit
surface acting on the boundary at r = a is determined by the boundary part of the
vacuum pressure, pD = −〈T D

D [gαβ]〉(b)
ren, taken at the point r = a:

pD(a) = e(D+1)σ (a)F, (25)

where F is given by (18).

3. CASIMIR STRESS ON CYLINDRICAL SHELL IN DS BACKGROUND

We will consider one of the simplest field-theoretical model in which the
domain wall type solutions appear (Vilenkin, 1985). The model involves a single,
real-valued scalar field ϕ with Lagrangian given by

L = −1/2gµν∂
µϕ∂νϕ − V (ϕ), (26)

and

V (ϕ) = λ

2
(ϕ2 − v2)2, (27)

where λ and v are positive constants. The classical ground states are given by
ϕ = ±v. The domain wall arises if there are regions in the space where the field ϕ

has different vacuum values, the domain wall interpolating between such regions.
In this paper, we will consider a domain wall between a cylindrical region around
z-axis in which ϕ = �in and the remaining part of the space where ϕ = �out.

As an application of the general formulae from Section 2, here we consider
the important special case of the dS3+1 bulk for which

ds2 = α2

η2

[
dη2 −

3∑
i=1

(dxi)2

]
, (28)

where η is the conformal time

−∞ < η < 0. (29)

The constant α is related to the cosmological constant as

α2 = 3

�
. (30)

Now we consider the pure effect of vacuum polarization due to the gravitational
field without any boundary conditions (to see such problem for spherical shell and
parallel plate geometry refer to Setare and Mansouri, 2001a, 2001b; Setare, 2001).
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The renormalized stress tensor for massless scalar field in de Sitter space is given
by Birrell and Davies (1986), and Dowker and Critchley (1976)

〈
T ν

µ

〉 = 1

960π2α4
δν
µ. (31)

The corresponding effective pressure is

P = −〈
T 1

1

〉 = −〈T r
r 〉 = − 1

960π2α4
, (32)

valid for both inside and outside the cylinder. Hence, the effective force on the
cylinder due to the gravitational vacuum polarization is zero. Now, assume there
are different vacuum inside and outside corresponding to αin and αout for the metric
equation (28). Now, the effective pressure created by gravitational part in Equation
(32) is different for different part of spacetime

Pin = −〈
T r

r

〉
in = − 1

960π2α4
in

= −�2
in

8640π2
, (33)

Pout = −〈
T r

r

〉
out = − 1

960π2α4
out

= −�2
out

8640π2
. (34)

Therefore, the gravitational pressure over shell, Pg, is given by

Pg = Pin − Pout = −1

8640π2

(
�2

in − �2
out

)
(35)

Now we consider the effective pressure due to the boundary condition under the
conformal transformation in four dimensions with the conformal factor given by

�(η) = α

η
. (36)

The vacuum force acting from inside per unit surface of the cylinder can be found
using Equations (11) and (25) for the vacuum radial pressure:

Fin = η4

α4
in

p1 |r=a−0= η4

α4
in

1

4π2a4

+∞∑
n=−∞

∫ ∞

0
dz z6 K̄n(z)

Īn(z)
F (p1)

n [In(z)], (37)

with notation (13). The expression for the radial projection of the vacuum force
acting per unit surface of the cylinder from the outside directly follows from
Equations (17) and (25) with q = p1:

Fext = − η4

α4
out

p1 |r=a+0= − η4

α4
out

1

4π2a4

+∞∑
n=−∞

∫ ∞

0
dz z6 Īn(z)

K̄n(z)
F (p1)

n [Kn(z)],

(38)
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Therefore, the vacuum pressure due to the boundary condition acting on the
cylinder is given by

Pb = Fin + Fext = η4

α4
in

1

4π2a4

+∞∑
n=−∞

∫ ∞

0
dz z6 K̄n(z)

Īn(z)
F (p1)

n [In(z)]

(39)− η4

α4
out

1

4π2a4

+∞∑
n=−∞

∫ ∞

0
dz z6 Īn(z)

K̄n(z)
F (p1)

n [Kn(z)].

The total pressure on the cylinder, P , is then given by

P = Pg + Pb = 1

8640π2

(
�2

out − �2
in

) + η4

36π2a4

+∞∑
n=−∞

∫ ∞

0
dz z6

(40)
(

�2
in

K̄n(z)

Īn(z)
F (p1)

n [In(z)] − �2
out

Īn(z)

K̄n(z)
F (p1)

n [Kn(z)]

)

The η- or time dependence of the pressure is intuitively clear due to the
time dependence of the physical radius of cylinder. This pressure corresponds to
the attractive or repulsive force on the shell if P < 0 or P > 0. The equilibrium
state for the cylinder correspond to the zero values of Equation (40): p = 0. Total
pressure, may be negative or positive, depending on the difference between the
cosmological constant in the two parts of spacetime. Given a false vacuum inside
the cylinder and true vacuum outside, i.e., �in > �out, then the gravitational part
is negative and tends to contract the cylinder, but the boundary pressure part may
be positive or negative. Therefore, the total effective pressure on the cylinder may
be negative, leading to a contraction of the cylinder. The contraction, however,
ends for a minimum radius of the cylinder, where both part of the total pressure are
equal. For the case of true vacuum inside the cylinder and false vacuum outside,
i.e., �in < �out, the gravitational pressure is positive. In this case, boundary part
can be negative or positive depending on the difference between Fin and Fout.
Hence, the total pressure may be either negative or positive.

4. CONCLUSION

In the present paper we have investigated the Casimir effect due to the con-
formally coupled massless scalar field for a cylindrical shell on background of the
conformally flat spacetimes. The general case of the mixed boundary conditions is
considered. The vacuum expectation values of the energy–momentum tensor are
derived from the corresponding flat spacetime results by using the conformal prop-
erties of the problem. Then we consider cylindrical shell with constant comoving
radius having different vacuums inside and outside, i.e., with false/true vacuum
inside/outside. The boundary induced part for the vacuum energy–momentum
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tensor is given by Equation (24), and the corresponding vacuum forces acting per
unit surface of the shell have the form of Equations (37) and (38). The effective
vacuum pressure due to the boundary condition acting on the cylinder is given by
Equation (37). The vacuum polarization due to the gravitational field without any
boundary conditions is given by Equation (31), the corresponding gravitational
pressure part has the form of Equation (32), which is the same from both sides
of the shell, and hence leads to zero effective force. However, when we consider
different cosmological constants for the space between and outside of the shell,
in this case the effective pressure created by gravitational part is different for
different part of the spacetime and add to the boundary part pressure. The total
pressure is given by Equation (40). Our calculation shows that for the cylindrical
shell with false vacuum inside and true vacuum outside, �in > �out, the gravi-
tational pressure part is negative but the boundary pressure part may be positive
or negative. In contrast, for the case of true vacuum inside the cylinder and false
vacuum outside, �out > �in, the gravitational pressure is positive and boundary
part can be negative or positive depending on the difference between Fin and Fout

in Equation (40). Therefore, the detail dynamics of the cylindrical shell depends
on different parameters and all cases of contraction and expansion may appear.
The result may be of interest in the case of formation of the cosmic cylindrical
domain walls in early universe.
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